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1. 

It is well known [1] that solutions of the improved engineering beam vibration theories
suggested by Timoshenko [2], Cowper [3], Stephen and Levinson [4], Berdichevsky and
Kvashnina [5], and by one of the authors [6] may give errors of lower asymptotic order
than known corrections for rotary inertia and shear deformation. Although these errors
are often numerically small [7], disregarding the end effects makes engineering beam
theories asymptotically incorrect. The proper boundary conditions which implicitly take
into account the end effect solutions (inner solutions) for a static asymptotic beam theory
were obtained by Fan and Widera on the basis of the reciprocal theorem [8]. For three
of the four classic types of loading and fixing conditions, this method provides explicit
relations between the beam theory variables at the end without consideration of the inner
solutions; however, in the case of prescribed displacement data, the authors did not show
the final results, although all necessary stress distributions, in particular, for a circular
cylinder were presented.

In what follows, the boundary conditions for free symmetric bending vibrations of
rectangular beams with a clamped end are derived on the basis of the Hellinger–Reissner
variational principle by using the eigenfunctions for the semi-infinite strip [9, 10]. The
influence of the corrections for the end effects in the displacement boundary conditions
on the two lowest natural frequencies is demonstrated for a uniform cantilever beam.

2.       

2.1. General equations
Vibration equations for a linear-elastic beam of a uniform narrow rectangular

cross-section of height 2H may be written in the Cartesian system xy as the following
relations of the two-dimensional theory of elasticity for generalized plane stress [11]:

1sx /1x+ 1txy /1y= rU� , 1txy /1x+ 1sy /1y= rV� ,

1U/1x=(sx − nsy )/E, 1V/1y=(sy − nsx )/E, 1U/1y+ 1V/1x= txy /G. (1)

Here U, V are the displacements in the x and y directions, sx , sy , txy are the stresses, G
and r are the shear modulus and the density, E=2G(1+ n), n is Poisson’s ratio, and
( � )= 1()/1t. In what follows, which is confined to free symmetric bending vibrations, the
classic types of boundary conditions are considered,

0Q xQL, y=2H: sy =0, txy =0, (2)

x= e, =y =EH: sx = txy =0, sx =V=0, txy =U=0 or U=V=0,

(3a–d)
where e=0 or e=L.
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The governing equations, the displacements U=Ub , V=Vb and the stresses sx = sb ,
txy = tb of the asymptotic beam theory [6] are

1v/1x=−u+6Q/5AG, 1M/1x=Q+ rIü,

1Q/1x= rAv̈− nrM� /5E, 1u/1x=M/EI+ nrv̈/5E, (4)

Ub = yu−(2+ n)y(y2 −3H2/5)Q/6EI, Vb = v− n(y2 −H2/5)M/2EI,

sb = yM/I, tb =(H2 − y2)Q/2I, (5)

where u and v are the averages of U and V over the cross-section, the weighting factors
y/I and (H2 − y2)/2I being used, Q and M are the shear force and the bending moment,
A=2H, I=2H3/3. From equations (5), it can be seen that the boundary conditions (3a–c)
may be satisfied at the end if one applies, respectively, M=Q=0, M= v=0, and
Q= u=0; however, in the case of displacement data prescribed over the end (3d), the end
effect solutions of equations (1) and (2) should be considered in addition to the right-hand
parts of equations (5). For long wavelength vibrations of the beam these solutions can be
constructed, with the use of the eigenfunctions for the semi-infinite strip xe 0, =y =EH
[9, 10], as

Un =H{[25n /(1+ n)− gn ] sin gn h+ 5n gn h cos gn h} exp(gn j)/2G,

Vn =−H{[(1− n)5n /(1+ n)+ gn ] cos gn h+ 5n gn h sin gn h} exp(gn j)/2G,

sn = gn [(25n − gn ) sin gn h+ 5n gn h cos gn h] exp(gn j),

tn = gn [(5n − gn ) cos gn h− 5n gn h sin gn h] exp(gn j),

where sn = sxn , tn = txyn , j= x/H, h= y/H, 5n =tan gn , and gn =−an 2 bn i (i=z−1)
are complex roots of the transcendent equation

sin 2gn =2gn , (6)

an q 0, bn q 0, ne 1, in particular, a1 =3·749, b1 =1·384.
In order to formulate boundary conditions at the ends separately, at each of them one

can omit the end effect solutions arising near the opposite end which are multiplied here
by the small factor exp(−an L/H) equalling 0·0006, even if n=1 and 2H/L=1. Then one
can write, e.g., at the end x=0 (below in all functions of x and j, x= j=0 was added,
and sx = s, txy = t were also denoted),

U= hHu−(2+ n)h(h2 −3/5)H3Q/6EI+Re s
a

n=1

An Un , (7a)

V= v− n(h2 −1/5)H2M/2EI+Re s
a

n=1

An Vn , (7b)

s= hHM/I+Re s
a

n=1

An sn , t=(1− h2)H2Q/2I+Re s
a

n=1

An tn , (7c, d)

where An are unknown complex constants, Re () denotes the real part, and gn =−an + bn i
in Un , Vn , sn and tn .
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2.2. Boundary conditions for the clamped end
In beam theory non-engineering boundary conditions for the clamped end x=0 at

which U=0, V=0, may be obtained, in accordance with equations (7a, b), by eliminating
the coefficients An from the following equations:

hHu−(2+ n)h(h2 −3/5)H3Q/6EI+Re s
a

n=1

An Un =0,

v− n(h2 −1/5)H2M/2EI+Re s
a

n=1

An Vn =0. (8)

Equations of this type have been treated by Johnson and Little [12] in the plane problem
for the semi-infinite strip using the Galerkin method with bi-orthogonal weighting
functions. However, as Spence [13] showed, the resulting matrix of the system of linear
algebraic equations is not diagonally dominant, and for a large number of terms in the
sums (8) the convergence of An breaks down. These computational difficulties may be
surmounted in stress analysis problems by using special weighting functions as was
suggested by Spence [13], but this method cannot be directly applied to beam theory.

Here the boundary conditions for the clamped end are obtained on the basis of the
Hellinger–Reissner variational principle. In the variational equation (1) of reference [6] the
term corresponding to the clamped end x=0 is �U ds+V dt�=0, where � � is an
integral of h from −1 to 1. Taking a number N of terms in the sums (7) and varying the
complex coefficients A1, . . . , An and the values of M and Q in ds and in dt, one can derive
a system of non-homogeneous linear algebraic equations of order 2N+2 for A1, . . . , An ,
u and v, assuming Q and M to be parameters. Thus, the values of the kinematic variables
u and v at the end x=0 and, by analogy, at the end x=L are presented in unified linear
forms with real coefficients l11, l12, l21, l22 and upper signs for the end x=0, lower signs
for the end x=L as

u=(2l11 M+ l12 HQ)H/EI, v=(l21 M2 l22 HQ)H2/EI, (9)

the engineering boundary conditions for the clamped end are [6]

u=0, v=0. (10)

Table 1 shows the convergence of lij (i, j=1, 2) to limit values as N increases, n=0·3.
The number of coinciding figures in the coefficients l12 and l21 in equations (9) is not less

T 1

The coefficients l11, l12, l21 and l22 in equations
(9), for different numbers N of terms in the

sums (7); n=0·3

N −l11 l12 = l21 −l22

1 0·00464 0·00599 0·02695
2 0·00796 0·00719 0·02820
5 0·00990 0·00773 0·02876

10 0·01048 0·00801 0·02893
20 0·01071 0·00813 0·02899
30 0·01077 0·00816 0·02901
40 0·01080 0·00818 0·02902
50 0·01081 0·00818 0·02902
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than 10 for all NE 50 and is in accordance with the accuracy of computing, indicating
the numerical stability of the above method; the complex roots gn of equation (6) have been
determined by using the procedure suggested by Hillman and Salzer [14]. Note that as N
increases, so all coefficients lij in equation (9) vary monotonically, and their values for
N=50 are

l11 =−0·01081, l12 = l21 =0·00818, l22 =−0·02902. (11)

The above equations of the non-engineering beam theory may be applied to the plane
strain problem for an infinite uniform unloaded plate, the two opposite clamped sides of
which are statically displaced one from one another by the shear force; the exact elasticity
solution of this problem was obtained by Wan [15]. Substituting np /(1− np ) and
Ep /(1− n2

p ), where np and Ep are Poisson’s ratio and Young’s modulus for the plate, for
n and E transform equations (4) into Reissner’s plate theory equations and, based on the
results presented in reference [15], one may determine the shear rigidity of the plate of
np =1/3, 2H/L=0·5 with the errors 0·1 or 4·1% depending on which of the boundary
conditions at the sides x=0 and x=L are used: equations (9), where E is replaced by
Ep /(1− n2

p ) and lij for n=(1/3)/(1−1/3)=0·5 are as l11 =−0·02828, l12 = l21 =0·01250,
l22 =−0·03232, or the conditions (10) of Reissner’s plate theory.

The boundary conditions (9) and (10) also give close results in dynamic problems: in
particular, for 2H/LE 1, n=0·3 the two lowest eigenfrequencies of a cantilever beam
increase by only 1·7 and 1·2%, respectively, if one takes equations (4) with the
non-engineering boundary conditions instead of the engineering ones; hereto, the
frequencies of the Timoshenko beam with the shear coefficient K=(5+5n)/(6+5n) [16]
almost always lie between the above corresponding eigenfrequencies.

3. 

In the present note the governing equations of the asymptotic beam theory derived in
reference [6] for uniform beams are complemented by the appropriate boundary
conditions. For the three classic types of homogeneous conditions at the end (3a–c),
the boundary conditions for a beam coincide with known exact equations [8]; in a case
of the displacement data at the end, the above non-engineering boundary conditions also
lead to results being in accordance with known solutions [15] and the qualitative
estimations [17]. It should be noted, however, that the above mathematically justified
asymptotic beam theory and the classic Timoshenko beam equations give practically equal
eigenfrequencies.
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